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s \ Calibrating Model Confidence: Pilot Experiment:
| Abstract | Temperature Calibration Analyzing the Rock Corpus
Deep MIR Models typically produces a confidence score with -
| their predictions, but do they really reflect the prediction’s |  Typical deep MIR nlédel use Soft-Max to turn the logit vector 2 into By combing the probabilistic confidence outputs from a chord root
| probability of being correct? confidence scores p: predictor (CREMA) and a key predictor (MADMOM), we can
I R exp(z) generate a relative chord root analysis, roman numeral style.
I Wh)’ do we care!? | b = osm(2) = > exp(z®) We determine the calibration constants for either model using their
o o k labeled calibration set respectively, and evaluate the effect of
| -To go beyond using just the hard predictions from deep models. | T . ibrati q ibrated confid - calibration on this analysis pipeline using the Rock Corpus.
- To interpret confidence scores as probabilities. emperature calibration produce calibrated conridence scores q by
I L - scaling z with a positive constant #*, determined by minimizingthe s ess s esasnasnassassasssssassnsnsssnssnssnsnnsnnnns
- To account for uncertainties in model predictions properly. | C
NLL over a labeled calibration set (x;, y,)Y., ~ .
| | = Key \ Root H U C A
| What can we do? | N (ﬁﬂ><y,-> H 23.66% | 1.44% 6.18% 13.65%
- Check confidence scores with Reliability Diagrams! | 4 =og(f*-z)  fr=agmin=-5 Y log 5 (o ® U 0.16% _455% | 707% || 674%
| Calibrate model confidence scores! ] i=1 A (p7) C 13.03% C 2.21% 3.64% 599%
N L TTssssssssssessssssnsasssssnassssnnesene A 17.00% C 478% | 599% ) 0%
While the logits Z are typically not accessible, we can also calibrate £ J Calb Error (ECE) of the real I duced b
: A, pected Calibration Error of the realtive root analysis produced by
MeaSU rin MOdel Rel |ab|||t . dlrec‘tly from the model confidence output p: using one of four outputs (C: calibrated, U: un-calibrated, H: hard decisions,
g y . . iy f)ﬂ A: annotation) for either the key or the chord root model.
iahili ; q = ogu(f - logp) = ogy(log p¥) = ———=
A o\ (K)
Reliability Diagram and ECE = (b7) ~ ~
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Reliability Diagram (left) and confidence histogram (right) beta =1 beta =125 beta = 2 beta = 15

of the CREMA root predictor on its test set. ECE: 17.9% (|
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Reliability Gap

Expected Calibration Error (ECE) = < |gap|, prevalence >

ECE is the average size of the reliability gaps per histogram bin, weighted by
prevalence. It is a single number summary of the Reliability of the model.
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